skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Viswanath, Bimal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this article, we conduct a measurement study to comprehensively compare the accuracy impacts of multiple embedding options in cryptographic API completion tasks. Embedding is the process of automatically learning vector representations of program elements. Our measurement focuses on design choices of three important aspects,program analysis preprocessing,token-level embedding, andsequence-level embedding. Our findings show that program analysis is necessary even under advanced embedding. The results show 36.20% accuracy improvement, on average, when program analysis preprocessing is applied to transfer bytecode sequences into API dependence paths. With program analysis and the token-level embedding training, the embeddingdep2vecimproves the task accuracy from 55.80% to 92.04%. Moreover, only a slight accuracy advantage (0.55%, on average) is observed by training the expensive sequence-level embedding compared with the token-level embedding. Our experiments also suggest the differences made by the data. In the cross-app learning setup and a data scarcity scenario, sequence-level embedding is more necessary and results in a more obvious accuracy improvement (5.10%). 
    more » « less
  2. Chatbot systems have improved significantly because of the advances made in language modeling. These machine learning systems follow an end-to-end data-driven learning paradigm and are trained on large conversational datasets. Imperfections or harmful biases in the training datasets can cause the models to learn toxic behavior, and thereby expose their users to harmful responses. Prior work has focused on measuring the inherent toxicity of such chatbots, by devising queries that are more likely to produce toxic responses. In this work, we ask the question: How easy or hard is it to inject toxicity into a chatbot after deployment? We study this in a practical scenario known as Dialog-based Learning (DBL), where a chatbot is periodically trained on recent conversations with its users after deployment. A DBL setting can be exploited to poison the training dataset for each training cycle. Our attacks would allow an adversary to manipulate the degree of toxicity in a model and also enable control over what type of queries can trigger a toxic response. Our fully automated attacks only require LLM-based software agents masquerading as (malicious) users to inject high levels of toxicity. We systematically explore the vulnerability of popular chatbot pipelines to this threat. Lastly, we show that several existing toxicity mitigation strategies (designed for chatbots) can be significantly weakened by adaptive attackers. 
    more » « less